
Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 1

Guidelines	 for	 Effective	 Software	 Discovery	
By Gareth Loy and Tom Gafford

Abstract	
The legal system, by its nature, is typically behind the curve of technology, and
the methods and procedures of discovery can be quite hampered by the
limitations imposed by courts unfamiliar with what is actually required for
competent and thorough software discovery. This article seeks to shed some
light on this important subject.

Introduction	
Courts refer to electronically stored information as ESI. Software source code in
its native habitat is a form of ESI.

Bottom line: analysts performing software discovery need the same source
code, tools, documents, and environment as the original developers of the
software.

Effective software discovery requires a transparent production, an optimal
discovery environment and good working conditions. It also requires time.

This document discusses what is required for effective software discovery.

Definitions	
Source code: Human readable instructions, which are translated into machine
readable instructions that comprise the shipped program in the accused device.

Build files, or “make” files: human-readable instructions that direct the translation
of source code into executable code, including instructions to be executed by
machines, and steps to be followed by persons responsible for creating the
shipped product.

Software	 Production	
The software production must include everything required to determine
infringement/non-infringement, including source code, directory hierarchy, build
rules, documentation, and suitable software development environment.

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 2

Source	 Code	
Source code must be accessible in its native habitat. Native habitat means the
electronic software development environment used by those who maintain and
develop the software, NOT paper printouts, Concordance databases, TIFFs, or
PDFs of source code. Source code files must be encoded in their native form,
typically ASCII or Unicode.

Directory	 Hierarchy	
Files must appear in their original directory hierarchies so that cross-references
such as “include” statements and hyperlinks resolve to the correct target file. The
file hierarchy must NOT be flattened into straight lists, as is common practice
with document management tools like Concordance. Standard file systems
include UNIX, Windows (FAT, NTFS), Macintosh, and Linux. What is produced
must be what developers actually developed, in the electronic format that they
developed it, not a transliteration of their work, not a subset of their work.

Software	 Development	 Environment	
The software development environment must include or stipulate tools for
reviewing, building, debugging, and preparing the software for delivery to
customers. Depending on the product, software developers commonly employ
commercial integrated development environments (IDE) such as Microsoft Visual
Studio. The type and version of IDE must be stipulated. All files used by the IDE
such as project description files, must be disclosed. Any required customizations
or global preference settings for the IDE must be disclosed.

Developers may augment the IDE with lower-level software tools to perform
specialized operations, such as building libraries, fetching appropriate software
modules from remote servers, database construction, and preparation of
software for installation. Such lower-level software systems are often based on
tools supplied with the UNIX operating system, or emulated versions of these
tools (such as CYGWIN). Required low-level tools must be stipulated or
disclosed.

Sometimes developers will build their own custom software to develop, process,
build, or install their software. All custom build software must be disclosed. All
build files must be disclosed. All standard lower-level tools required to build the
software must be disclosed or stipulated.

Software	 Target	 Release	 and	 Marketing	 Requirements	 Documents	
Realistically, software that is developed and maintained over years typically is
segmented into target releases that correspond in time with when the company
wants to release a new feature. Internally, Engineering and Marketing
departments negotiate over features and bug fixes, and draft a kind of internal
company contract called a Marketing Requirements Document (MRD) to specify

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 3

the capabilities of the release. A convenient code name is given to define the
project leading to the release. In practice, Marketing usually assigns a different
name to the released product than is used internally. For example, a
development effort internally named “Stoli” (after a famous hard liquor) might be
released by Marketing as a completely separate product name, “Frobnitz 2.0”.

Oftentimes, the source code for each release will be saved as a unit for the
purposes of manufacturing the product. Defendant must disclose relevant lists of
product capabilities, internal names, years manufactured, and corresponding
product names of all disclosed software so that analysts can focus on those
releases most relevant to the time-span and capabilities of the disclosed
software.

Conditional	 Compilation	
Modern computer languages allow developers to conditionally include or exclude
blocks of code in a particular source code file via conditional compilation.
Instructions for which blocks of code are to be included or excluded are given in
the build files that accompany the source code.

Conditional compilation can also be used to set global variables that determine
the overall behavior of the software.

Therefore, build files must be disclosed so that it can be known which parts of
each source code file are actually used to build the shipping software.

Object	 Code,	 Debugging,	 and	 Executable	 Code	
The human-readable source code is converted on instructions of the build rules,
using the build tools, to create object code, which is in turn linked and loaded to
create the executable code that can then be shipped to customers.

While the software is under development, the build tools usually construct the
executable code so that it can be debugged. Debugging means being able to
inspect the software as it executes. Tables are placed in the executable code that
show the corresponding location in source code for each step taken by the
software. Developers can debug software by setting breakpoints in the code that
halt execution when the breakpoints are triggered. When halted, developers can
inspect the software to determine such things as how the software arrived at the
breakpoint, what it will do next, and the values of data in memory.

Platform-‐Targeted	 Compilation	
Using the development environment (IDE), developers can customize how
software is linked for different platforms. For example, software to be executed
on both Windows and Macintosh computers must include different libraries to
interface with the different platform capabilities. Customizations for different

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 4

platforms must be disclosed.

Documentation,	 Comments,	 Revision	 History	
Product documentation, code commenting, and revision history provide essential
context for understanding the software.

It has been said that software is like quick-set cement: once it is written, it is
difficult to change. At least part of the reason for this difficulty is that it is easier to
write code than to read it. As a consequence, source code can become so
complex that it is prohibitively expensive to maintain, unless good code hygiene
is maintained: follow good coding conventions, name data structures and
variables for what they actually do, comment the code, document the code, and
keep documenting the code throughout its lifetime as it evolves.

These considerations also apply to the analystʼs source code review: it is vital
that all relevant documentation, comments, and revision histories are disclosed.

Documentation	
Documentation of source code includes anything that helps understand how to
develop, maintain, test, and ship software products. These include white papers,
user guides, theory of operations, product specifications, standards documents,
application programming interfaces (API), marketing requirements documents
(MRD), engineering change orders (ECO), tutorials, electronic and other
correspondence (email), marketing literature, dictionaries, internal and external
web sites for developers/marketers/customers, help documentation for
developers/marketers/customers, troubleshooting guides, audio/video materials,
PowerPoint presentations, and the like.

It is generally not enough to disclose only product specification documents
written as thought experiments at the beginning of a software development
project. Follow-on documents are also required that show how the software
development evolved, showing how good and bad ideas in the initial specification
had to change to realize the shipping product, to respond to market forces,
competition, equipment limitations, and so on.

Comments	
The native software development habitat typically includes commented source
code. Comments typically describe important data structures, characterize the
theory of operation of the principal methods, and give insight as to how parts of
the system cooperatively perform the required actions. If development engineers
commented their code, comments must NOT be stripped from the produced
source code.

If source code is developed by non-native English speakers, analysts may

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 5

require translation services.

Revision	 History	
Source code revision history typically consists of a database of changes made by
developers to the software source files. This provides historical information about
when features were added and bugs were fixed. Revision history is typically
managed by a revision control system (RCS) that automates storing, retrieval,
logging, identification, and merging of revisions. Many commercial and
noncommercial systems perform this function. In some, the revision history is
stored in the individual source code files (RCS). Alternately, revision information
is stored in a central repository (Microsoft Source Safe, CVS, or Subversion).

Revision history must be supplied with source code.

Discovery	 Environment	 	
Defendants disclosing software often fear untoward disclosure of their trade
secrets by competitors as a side-effect of analyst discovery. It is reasonable in
these circumstances to restrict access to the software, but not to place galling
limitations that would unduly limit discovery.

Analysts must be able to install software inspection tools of their choice on the
computers containing discoverable software.

Analysts must have access to all needed services to perform discovery. If, for
example, the discoverable software requires Internet access to operate, then the
analyst must be allowed to debug the software while it is connected to the
Internet. One solution to performing this step while protecting defendantʼs
proprietary information is to enclose the discovery environment on a private
network or on a subnet of the defendantʼs own network. That way, network traffic
does not go across the Internet, thereby protecting the defendantʼs software from
inadvertent disclosure to competitors.

Work	 Environment	 and	 Location	
Work conditions should not adversely affect the work of the analyst, and should
respect the human needs of the analyst.

A convenient location should be provided for analysts to optimally perform their
work. Ideally, the work site is the analystʼs own premises. Second best is a
protected site within easy commuting distance from the analystʼs premises.
Arrangements requiring overnight travel put a significant burden on discovery.

The analyst should be allowed Internet access, to send/receive email and surf
the web during discovery. Cell phone coverage should be available at the site.
Natural light and air should be available.

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 6

Given the many hours required to perform discovery of all but the most trivial
software, discovery hours should be generous. Provision to extend to nights and
weekends should be available.

Fallbacks	 and	 Work-‐Arounds	
The bottom line: anything less than the native software in its native environment
renders the analystʼs work more difficult.

Defendant	 produces	 paper	 copy	 of	 source	
There is a special circle in Hell reserved for such defendants. If paper printouts
are all that is available, printing quality must be sufficient to allow source code to
be OCRʼed with 100% accuracy. This means no watermarks, no copies of
copies, no dropouts, a serif font face that distinguishes I (uppercase i) from l
(lowercase L). For any realistically large software effort, paper disclosure puts the
plaintiff at a serious disadvantage because of the difficulty analysts face of
navigating stacks and stacks of paper.

Defendant	 produces	 unsearchable	 PDFs	 or	 TIFFs	 of	 the	 source	
These defendants end up in the same circle in Hell described above. The same
criteria apply.

Defendant	 produces	 searchable	 PDFs	 of	 the	 source	
Why did they go to all this trouble instead of just providing electronic sources? At
least the period for discovery should be extended by the time it takes analysts to
convert these files back to source code and reconstitute the directory hierarchy.

Defendant	 produces	 flat	 file	 list	
The directory hierarchy of the software provides important information to analysts
about the way in which the product is built and maintained. Likewise, file names
provide insight as to what is contained, and also provide the targets for
references from other source code, or from hyperlinked documents. Tools like
Concordance that flatten the directory hierarchy to a numbered list of files throw
away this information. While it can sometimes be reconstituted by analysts, it
takes time and effort that is then not being spent on discovery.

Defendant	 produces	 more	 or	 less	 than	 is	 required	
A common technique of uncooperative defendants is to provide more or less
software than is required to build the accused product.

If too much code is produced, analysts depend upon the software build scripts
and installation scripts to separate the wheat from the chaff, which adds time to
discovery. This is the “needle-in-a-haystack” defensive strategy.

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 7

If too little code is produced, or build scripts are not produced, or there are
missing libraries, or missing source code, time is wasted while analysts attempt
to identify and request the missing elements.

Add time to discovery if defendant provides more or less than the exact source
used to generate the product.

Defendant	 does	 not	 produce	 debuggable	 executable	 	
If the defendant does not produce debuggable executable, then the analyst must
use static software analysis to determine the operation of the software. See
below.

Badly	 written	 software	
If the software is particularly badly written, the time required for the analysts to
understand it can be much longer than if the code is well written.

Even good code can go bad, just like things left in the refrigerator too long. For
example, though the code has been changed, the comment describing how it
used to work is not revised to reflect current reality. The analyst is thrown off,
requiring more time to sort out what is actually happening.

Old code may be left around like a sponge left in a patient after surgery. If itʼs
deemed by management to be too costly to remove, and wastes little time in the
running program, some companies will just leave it in. Such code can act like a
red herring to analysts.

Bad programming practices such as go-to statements may be used, leading to
dreaded “spaghetti code”. Code modules may be duplicated by “copy/paste”
editing and modified slightly to perform a related function rather than using object
oriented inheritance methods.

Software written by non-English speakers can be especially challenging, and
may require translation services to understand.

Static	 Code	 Analysis	 vs.	 Dynamic	 Code	 Analysis	
Dynamic software analysis is used when debuggable executable software is
available. The analyst can compare the operation of the software directly to the
statements in the source code, inspect data, and more naturally follow the train of
thought of the software developers. Dynamic analysis is generally preferred over
static analysis, but sometimes static analysis is also required, as when
considering how a part of the program works that cannot be exercised because
the right conditions cannot be triggered.

Copyright 2011 Gareth Loy & Tom Gafford, all rights reserved 8

Dynamic analysis typically requires more than just a debuggable executable,
however. It typically also requires appropriate software installation, so that the
services of the underlying operating system are available; other processes to
execute that may perform required auxiliary functions; databases initialized with
appropriate settings to allow the software to function; relevant input files,
appropriate directory hierarchies for output files; a network; other computers on
the network performing specific functions such as network services; and so on.

Static software analysis is used when debuggable executable software is not
available. The analyst must then understand the operation of the software by
thinking about how it would operate if he could debug it. This can be
exponentially more difficult than dynamic analysis for realistically-scaled software
projects, for at least these reasons: 1) each branch in the program is potentially a
different behavior of the software that must be evaluated; 2) values of data that
affect program operation must be calculated by the analyst.

Static analysis is sometimes required, as when debuggable software is not
available, or when software cannot be induced to dynamically evoke a particular
response under investigation.

If non-debuggable software is provided, experience has shown that it is often
worthwhile for the analyst to overcome whatever obstacles are in the way to
make it debuggable.

Conclusion	
Careful consideration of the above points can drastically affect software
discovery.

Bottom line: analysts performing software discovery need the same source
code, tools, documents, and environment as the original developers of the
software.

